
708 B.I.Cheshankov 

6. Cheshankov. B., Resonance oscillations of two connected penduli. B”lgarska 
Akad. na Naukite, Teoret. i Prilozh. Mekh.Sofiia, Vol. 1, Ng 1, 1970. 

7. Cheshankov, 8. I., Resonance oscillations of a compound torsion pendulum. 
PMM Vol. 36, N* 1, 1972. 

8. Cheshankov, B. I., Resonance oscillations of a double compound pendulum. 
Godish.Vyssh. tekhn. uchebn. zaved.,Matematika, Vol. 6, No2, 1970. 

Translated by L.K. 

UDC 531.31 

ON PARTICULAR SOLUTIONS OF THE PROBLEM OF MOTION OF A GYROSCOPE 

IN GIMBAL MOUNT 

PMM Vol. 38, NQ 4, 1974, pp. 757-760 

A. A. BOGOIAVLENSKII 

(Moscow) 
(Received June 26, 1973) 

Particular solutions of equations of motion of a heavy gyroscope in gimbal mount 
with the outer gimbal axis horizontal was considered in [ 1, 21. 

Particular solutions of this problem are considered below in the case, when the 

axis of rotation of the outer gimbal is horizontal and the center of gravity of the 
gyroscope and of the casing are not lying on the axis of symmetry of the gyro- 

scope ellipsoid of inertia but in a plane passing through the axis of symmetry 

perpendicularly to the axis of rotation of the inner gimbal. The latter solutions 
also complement each other symmetrically, similarly to those mentioned above. 

The fixed system of coordinates 0211; is permanently attached to the axis of rotation 
of the outer gimbal (Fig. 1). The 5 -axis lies on the axis of rotation of that gimbaLThe 

system of coordinate axes Or,y,z, is perma- 
nently attached to the outer gimbal. The 
-L‘Z - and y, -axes coincide with the axes of 
rotation of the outer and inner gimbals, res- 
pectively. The system of coordinates OZ~?J~Z, 

is permanently attached to the casing. The 
?/i-axis is directed along tha casing axis of 

rotation and the 21 -axis along the rotor spin 
axis. Axes x1, y1 and z1 are the principal 
axes of the ellipsoid of the casing inertia 
about the fixed point 0. 

Let us assume that the ellipsoid of rotor 
inertia about point 0 is the ellipsoid of ro- 

Fig. 1 
tation of the casing about the %-axis. 

We use the following notation: rl is the 
angle of turn of the outer gimbal ; p is the angle of turn of the casing (inner gimbal), 
y is the angle of turn of the rotor in the casing (angle of spin of the gyroscope about the 
z.,-axis); ~~ is the moment of inertia of the outer gimbal about the : -axis; ‘11, BI 
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and C1 are the principal moments of inertia of the casing about the 9-, yl- and zl- 

axes ; A, B = A, C are the moments of inertia of the rotor about the same axes. 

The table of cosines of angles between the axes of the system of coordinates E, 11, 5 

and x1, yl, z1 is of the form 

X1 Yl Zl 

E cos p 0 sin p (1) 

rl sin a sin fi cosa - sin a cos fi 

5 - cos asin p sin a cos a cos fi 

The overall kinetic energy of the system is 

22’ = (A, - Co sin2 fl) a’2 + BOpf2 + C (y’ + a’ sin b)2 

ALl = A + Al + A,, Bo = A + &, co = A + Al - Cl 

We assume the absence of friction in bearings and that the force of gravity acts on 
the system. 

Let the distribution of masses in the considered system be such that the conditions 

A, = B, and Co = 0 are satisfied. We express the equations of motion of the system 
in the form of Lagrange equatioti in variables a, b and y 

d [AOa’ + C sin fi (y’ + a’ sin fi)] / dt = aU / aa 
A&” - C cos fi (y’ + a’ sin p) a’ = au / ag 
d [C (y’ + a’ sin f3)lidt = BU I ay 

(2) 

For the kinetic energy we have the integral 

A0 (a’Z -/- fi’“) + C (v’ + a’ sin fi)” = 2U + 2h (3) 

We direct the 5 -axis of the fixed system of coordinates vertically upward and the E - 

axis horizontally (Fig. l), and assume that the center of gravity of the rotor and casing 
lies in the 21~1 -plane, where its coordinates are x01 and ~0. Then, in accordance with 
Table (1) , the force function is of the form 

U = mg cos a (x0 sin fi - z0 cos fi) 
(m = mass of rotor and casing) (4) 

In this case the equations of motion (2) admit besides integral (3) the integral which 
corresponds to the ignorable coordinate y 

y’ + a’ sin fi = r0 (rU = const) (5) 

For the particular value r0 = 0 we have one more first integral 

Aoa’P’ 1 mg sin a (z,cos p + z0 sin fl) + I (I = const) (6) 

We pass to variables 
o=B+a, o=jS-a (7) 

The equations of motion for the force function (4) and r,, = 0 yield the first integrals 

A,o’” = 2mg (zO sin (5 - z0 cos a) + El 
A,o’2 = 2mg (x0 sin 0 - z0 cos Q)) + I, 
(11 + I, = 4h, II - I, = 41) 

(8) 

In accordance with integrals (3) and (6) constants h, 2 and 11, 1, are related by formu- 
las appearing in parentheses. We introduce the following notation for rhe constants: 
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We substitute variables 

nsino-~coso+a=-211, II sin 0 - c COS 0 7 b = - 2V 
(10) 

Equation (8) in new variables becomes 

(dw/dt)2 = 4w3 - (3x2 f A*) w - x (9 - AZ) 
(w = 1L for x = a, ~1 r:m v for x = b, A2 = C’ 7- /I’) 

(II) 

If we set dz / dt = I 1 , Eq. (11) is satisfied by the Weierstrass function g, (.tj with in- 
variants gC and g3) , and i&_ (z) with invariants gn” and gn” defined by 

gzr = 3a2 f AZ, g3’ = a (a’ - A”), gz” = 3b” + 1”. g&” = b (b2 - AZ) 

Let us take the plus sign. In accordance with (10) we obtain 

- 2@i (7) = n sin (T - c cos 0 + a,- 2p2 (7) = n sin 0 - C cos 

The first equality yields for sin o a quadratic equation whose solution is 

sin u = l/A2 (- n (2& + a) 3_ n [A” - (2r1 + u)~]‘,~) 

We obtain a similar expression for sin 0. 

wtb 

Parameters a and b are expressed in terms of Weierstrass functions with the substitu- 
tion of variables (7) and of the derived expressions for sin (T and sin o. Angle y is cal- 
culated by the quadrature for r~ = 0. 

The right-hand part of Eq. (11) is a’third power polynomial in u,, which has three real 

roots 

Let n > o and c > 0. We can then deduct from equality (10) the following conclusion. 

Let us consider the z,zt-plane (Fig. 2) in 
which we draw orthogonal axes Z*X* obtained 
by the rotation of the %- and xl-axes by the 

angle z I 2 - ?L in the counterclockwise di- 

rection. The center of gravity of the rotor 

and casing, whose initial coordinates were 2” 
and .c,, in the new coordinates, become 

Fig. 2 We denote by t‘ the angle of inclination of 
the radius vector of ooint (zU, ,r,J to the .I.* - 

axis. If h = 0, then 
r’(, siir 5 - _-II co’ 5 

sin e = 
‘p I- (I 

_p 
,_,,” , r,*)I 2 A 

Hence the variable P varies within the limits (‘1 2~ li .< ca. A similar relationship can 

be derived for the variable v: ‘;I < Y < cp. Actual mechanical motions occur for o3 > 
e,. This condition for variables IL and v yields, respectively, the inequalities 

/l + 1 + ,r,c (.L,,? -\- z,?)’ p > u 
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For other restrictions on the position of the center of gravity of the rotor and casing. 
for instance, n > 0, c < 0 (etc.), it is possible to determine the restrictions on constants 
of integrals for actual mechanical motion. If the n -axis of the fixed system of coordi- 
nates is directed vertically upward, then in accordance with (1) the force function as- 

sumes the form 
U : - I,L~ sin a (.Q sin B - z0 cos 6) (13) 

The equations of motion (2) admit first integrals of kinetic energy and 7 correspond- 
ing to the ignorable coordinate. For the particular value r0 = 0 there exists one more 

integral Aoa’b’ ~_Z I,L~ cos a (2” cos fi + z0 sin B) + 1 

After the substitution of variables (7), the equations of motion yield first integrals 

i1,o ‘p = 2rng (2” cos u -t z0 sin c) + 1, (14) 
A”w” = - 2 rng (x0 cos 0 f z0 sin 0) + 1, 

Euler’s angles and restrictions on constants of integrals for actual mechanical motion 

are computed in the manner described above. 
Indicated motions may be interpreted in terms of previously determined motions [l, 

21 as follows. 
The distance of the center of gravity from the coordinate origin in the z,.Q-plane 

(Fig. 2) is A0A i trrg 
z* _ --$ b siri F, 

IO 
z,.* = _ L-- ,,1~ A COS E, j"' = 8' (15) 

Taking into account (9), (12) and (15), we can write Eqs. (8) as follows: 

E ,2 = 2 (- A cos E + 3x) 
(o = h for x = a, 0 = h for X = b) 

(16) 

In a similar manner Eqs. (14) can be written as 

el2 = 2 (j A sin E + 3x) 
(o = X for x = a, j z + 1; o = h for x = b, j = -1) 

(17) 

If in Eqs. (16) we make the substitution 

11’ 6 TI y1 Zl z y 3 I A” B’ C” J P 

a P --n/2 I] g 4 y1 21 --:I A2 B1 Al Cl 5-x/2 o--n/?. 

they coincide with Eqs. (9) in [2], while the same substitution in Eqs. (17) yields Eqs. 

(9) ln Cl]. 
The investigation of motion in the z * * -axes presents certain inconveniences , since 1: 

these alter their position with time in relation to the fundamental gimbal elements 
(which is not the case with the zlz, -axes) and can, apparently, lead to various interpre- 
tations of the motion. 
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